Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621991

RESUMO

The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.


Assuntos
Região CA1 Hipocampal , Corpos Mamilares , Neurônios , Ratos Long-Evans , Sono , Ritmo Teta , Vigília , Animais , Corpos Mamilares/fisiologia , Masculino , Neurônios/fisiologia , Sono/fisiologia , Ratos , Ritmo Teta/fisiologia , Vigília/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos/fisiologia
2.
Sci Rep ; 14(1): 5977, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472268

RESUMO

mGluR2 receptors are widely expressed in limbic brain regions associated with memory, including the hippocampal formation, retrosplenial and frontal cortices, as well as subcortical regions including the mammillary bodies. mGluR2/3 agonists have been proposed as potential therapeutics for neurological and psychiatric disorders, however, there is still little known about the role of these receptors in cognitive processes, including memory consolidation. To address this, we assessed the effect of the mGluR2/3 agonist, eglumetad, on spatial memory consolidation in both mice and rats. Using the novel place preference paradigm, we found that post-sample injections of eglumetad impaired subsequent spatial discrimination when tested 6 h later. Using the immediate early gene c-fos as a marker of neural activity, we showed that eglumetad injections reduced activity in a network of limbic brain regions including the hippocampus and mammillary bodies. To determine whether the systemic effects could be replicated with more targeted manipulations, we performed post-sample infusions of the mGluR2/3 agonist 2R,4R-APDC into the mammillary bodies. This impaired novelty discrimination on a place preference task and an object-in-place task, again highlighting the role of mGluR2/3 transmission in memory consolidation and demonstrating the crucial involvement of the mammillary bodies in post-encoding processing of spatial information.


Assuntos
Corpos Mamilares , Memória Espacial , Humanos , Ratos , Camundongos , Animais , Compostos Bicíclicos com Pontes/farmacologia , Encéfalo , Hipocampo
3.
Neuropsychologia ; 191: 108728, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939875

RESUMO

To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.


Assuntos
Memória Episódica , Humanos , Diencéfalo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Amnésia/diagnóstico por imagem , Rememoração Mental , Corpos Mamilares/diagnóstico por imagem
4.
Schizophrenia (Heidelb) ; 9(1): 48, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528127

RESUMO

While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.

5.
Neuroimage Rep ; 2(4): None, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36507070

RESUMO

The mammillary bodies may be small, but they have an important role in encoding complex memories. Mammillary body pathology often occurs following thiamine deficiency but there is increasing evidence that the mammillary bodies are also compromised in other neurological conditions and in younger ages groups. For example, the mammillary bodies are frequently affected in neonates with hypoxic-ischemic encephalopathy. At present, there is no normative data for the mammillary bodies in younger groups making it difficult to identify abnormalities in neurological disorders. To address this, the present study set out to develop a normative dataset for neonates and for children to young adult. A further aim was to determine whether there were laterality or sex differences in mammillary body volumes. Mammillary body volumes were obtained from MRI scans from 506 participants across two datasets. Measures for neonates were acquired from the Developing Human Connectome Project database (156 male; 100 female); volumes for individuals aged 6-24 were acquired from the NICHE database (166 males; 84 females). Volume measurements were acquired using a semi-automated multi-atlas segmentation approach. Mammillary body volumes increased up to approximately 15 years-of-age. The left mammillary body was marginally, but significantly, larger than the right in the neonates with a similar pattern in older children/young adults. In neonates, the mammillary bodies in males were slightly bigger than females but no sex differences were present in older children/young adults. Given the increasing presentation of mammillary body pathology in neonates and children, these normative data will enable better assessment of the mammillary bodies in healthy and at-risk populations.

6.
Trends Neurosci ; 45(7): 550-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35599065

RESUMO

The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.


Assuntos
Hipocampo , Hipotálamo , Animais , Cerebelo , Humanos , Aprendizagem , Mamíferos , Vias Neurais/anatomia & histologia , Ratos , Ritmo Teta
7.
Neurobiol Aging ; 113: 39-54, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303671

RESUMO

Characterizing age- and risk-related hippocampal vulnerabilities may inform about the neural underpinnings of cognitive decline. We studied the impact of three risk-factors, Apolipoprotein (APOE)-ε4, a family history of dementia, and central obesity, on the CA1, CA2/3, dentate gyrus and subiculum of 158 cognitively healthy adults (38-71 years). Subfields were labelled with the Automatic Segmentation of Hippocampal Subfields and FreeSurfer (version 6) protocols. Volumetric and microstructural measurements from quantitative magnetization transfer and Neurite Orientation Density and Dispersion Imaging were extracted for each subfield and reduced to three principal components capturing apparent myelin/neurite packing, size/complexity, and metabolism. Aging was associated with an inverse U-shaped curve on myelin/neurite packing and affected all subfields. Obesity led to reductions in myelin/neurite packing and size/complexity regardless of APOE and family history of dementia status. However, amongst individuals with a healthy Waist-Hip-Ratio, APOE ε4 carriers showed lower size/complexity than non-carriers. Segmentation protocol type did not affect this risk pattern. These findings reveal interactive effects between APOE and central obesity on the hippocampal formation of cognitively healthy adults.


Assuntos
Demência , Obesidade Abdominal , Apolipoproteína E4/genética , Apolipoproteínas , Atrofia/patologia , Demência/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Obesidade Abdominal/patologia
8.
Pediatr Res ; 92(1): 174-179, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33654286

RESUMO

BACKGROUND: The mammillary bodies (MBs) have repeatedly been shown to be critical for memory, yet little is known about their involvement in numerous neurological conditions linked to memory impairments, including neonatal encephalopathy. METHODS: We implemented a multicentre retrospective study, assessing magnetic resonance scans of 219 infants with neonatal encephalopathy who had undergone hypothermia treatment in neonatal intensive care units located in the Netherlands and Italy. RESULTS: Abnormal MB signal was observed in ~40% of infants scanned; in half of these cases, the brain appeared otherwise normal. MB involvement was not related to the severity of encephalopathy or the pattern/severity of hypoxic-ischaemic brain injury. Follow-up scans were available for 18 cases with abnormal MB signal; in eight of these cases, the MBs appeared severely atrophic. CONCLUSIONS: This study highlights the importance of assessing the status of the MBs in neonatal encephalopathy; this may require changes to scanning protocols to ensure that the slices are sufficiently thin to capture the MBs. Furthermore, long-term follow-up of infants with abnormal MB signal is needed to determine the effects on cognition, which may enable the use of early intervention strategies. Further research is needed to assess the role of therapeutic hypothermia in MB involvement in neonatal encephalopathy. IMPACT: The MBs are particularly sensitive to hypoxia in neonates. Current hypothermia treatment provides incomplete protection against MB injury. MB involvement is likely overlooked as it can often occur when the rest of the brain appears normal. Given the importance of the MBs for memory, it is necessary that this region is properly assessed in neonatal encephalopathy. This may require improvements in scanning protocols.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Humanos , Hipotermia/terapia , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/terapia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/terapia , Corpos Mamilares , Estudos Retrospectivos
9.
Neurosci Biobehav Rev ; 121: 60-74, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309908

RESUMO

The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.


Assuntos
Núcleos Anteriores do Tálamo , Corpos Mamilares , Amnésia , Animais , Humanos , Memória , Vias Neurais
10.
Curr Opin Behav Sci ; 32: 50-56, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32715030

RESUMO

In this review we briefly outline how lesion studies, temporary inactivation and neural activity assays have helped update functional models of the retrosplenial cortex, a region critical for episodic and spatial memory. We advocate for the continued importance of appropriately designed behavioural studies in the context of novel experimental methods, such as optogenetic and chemogenetic manipulations. At the same time, we caution against the overreliance on any given level of analysis or experimental technique. Complementary, multimodal strategies are required for understanding how the retrosplenial cortex contributes to the formation and storage of memories both at a structural and systems-level.

11.
Wellcome Open Res ; 5: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500097

RESUMO

Background: Neuronal plasticity is thought to underlie learning and memory formation. The density of dendritic spines in the CA1 region of the hippocampus has been repeatedly linked to mnemonic processes. Both the number and spatial location of the spines, in terms of proximity to nearest neighbour, have been implicated in memory formation. To examine how spatial training impacts synaptic structure in the hippocampus, Lister-Hooded rats were trained on a hippocampal-dependent spatial task in the radial-arm maze.  Methods: One group of rats were trained on a hippocampal-dependent spatial task in the radial arm maze. Two further control groups were included: a yoked group which received the same sensorimotor stimulation in the radial-maze but without a memory load, and home-cage controls. At the end of behavioural training, the brains underwent Golgi staining. Spines on CA1 pyramidal neuron dendrites were imaged and quantitatively assessed to provide measures of density and distance from nearest neighbour.  Results: There was no difference across behavioural groups either in terms of spine density or in the clustering of dendritic spines. Conclusions: Spatial learning is not always accompanied by changes in either the density or clustering of dendritic spines on the basal arbour of CA1 pyramidal neurons when assessed using Golgi imaging.

12.
Brain Neurosci Adv ; 4: 2398212819899316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219177

RESUMO

The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.

13.
Cereb Cortex ; 30(8): 4424-4437, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32147692

RESUMO

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.


Assuntos
Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Camundongos
14.
Front Neural Circuits ; 13: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619970

RESUMO

Complex spatial representations in the hippocampal formation and related cortical areas require input from the head direction system. However, a recurrent finding is that behavior apparently supported by these spatial representations does not appear to require input from generative head direction regions, i.e., lateral mammillary nuclei (LMN). Spatial tasks that tax direction discrimination should be particularly sensitive to the loss of head direction information, however, this has been repeatedly shown not to be the case. A further dissociation between electrophysiological properties of the head direction system and behavior comes in the form of geometric-based navigation which is impaired following lesions to the head direction system, yet head direction cells are not normally guided by geometric cues. We explore this apparent mismatch between behavioral and electrophysiological studies and highlight future experiments that are needed to generate models that encompass both neurophysiological and behavioral findings.


Assuntos
Cabeça , Corpos Mamilares/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Sinais (Psicologia) , Hipocampo/fisiologia
15.
J Neurosci ; 39(34): 6696-6713, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31235646

RESUMO

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Assuntos
Amnésia/fisiopatologia , Diencéfalo/fisiopatologia , Hipocampo/fisiopatologia , Corpos Mamilares/fisiopatologia , Vias Neurais/fisiopatologia , Tálamo/fisiopatologia , Amnésia/diagnóstico por imagem , Animais , Diencéfalo/diagnóstico por imagem , Eletroencefalografia , Ritmo Gama , Hipocampo/diagnóstico por imagem , Locomoção , Imageamento por Ressonância Magnética , Masculino , Corpos Mamilares/diagnóstico por imagem , Aprendizagem em Labirinto , Vias Neurais/diagnóstico por imagem , Plasticidade Neuronal , Ratos , Sono REM , Memória Espacial , Tálamo/diagnóstico por imagem , Ritmo Teta
16.
Neurobiol Aging ; 75: 54-61, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550978

RESUMO

The anterior thalamic nuclei are important for spatial and episodic memory, however, surprisingly little is known about the status of these nuclei in neurological conditions that present with memory impairments, such as Down syndrome. We quantified neurons and glial cells in the anterior thalamic nuclei of four older patients with Down syndrome. There was a striking reduction in the volume of the anterior thalamic nuclei and this appeared to reflect the loss of approximately 70% of neurons. The number of glial cells was also reduced but to a lesser degree than neurons. The anterior thalamic nuclei appear to be particularly sensitive to effects of aging in Down syndrome and the pathology in this region likely contributes to the memory impairments observed. These findings reaffirm the importance of examining the status of the anterior thalamic nuclei in conditions where memory impairments have been principally assigned to pathology in the medial temporal lobe.


Assuntos
Síndrome de Down/patologia , Neuroglia/patologia , Neurônios/patologia , Núcleos Talâmicos/patologia , Idoso , Idoso de 80 Anos ou mais , Núcleos Anteriores do Tálamo/patologia , Feminino , Humanos , Transtornos da Memória/patologia , Memória Episódica , Pessoa de Meia-Idade , Vias Neurais/patologia , Lobo Temporal/patologia
17.
J Neurosci ; 39(1): 3-14, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389839

RESUMO

Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.


Assuntos
Cognição/fisiologia , Tálamo/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Processos Mentais
18.
Behav Neurosci ; 132(5): 366-377, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30321026

RESUMO

The rodent retrosplenial cortex is known to be vital for spatial cognition, but evidence has also pointed to a role in processing nonspatial information. It has been suggested that the retrosplenial cortex may serve as a site of integration of incoming sensory information. To examine this proposal, the current set of experiments assessed the impact of excitotoxic lesions in the retrosplenial cortex on two behavioral tasks that tax animals' ability to process multiple and overlapping environmental stimuli. In Experiment 1, rats with retrosplenial lesions acquired a negative patterning discrimination, a form of configural learning that can be solved only by learning the conjunction of cues. Subsequent transfer tests confirmed that both the lesion and control animals had solved the task by using configural representations. Furthermore, in Experiment 2, a 2nd cohort of retrosplenial lesion animals successfully acquired conditioned inhibition. Nevertheless, the same animals failed a subsequent summation test that assesses the ability to transfer what has been learned about one stimulus to another stimulus in the absence of reinforcement. Taken together, these results suggest that in the nonspatial domain, the retrosplenial cortex is not required for forming associations between multiple or overlapping environmental stimuli and, consequently, retrosplenial engagement in such processes is more selective than was previously envisaged. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Assuntos
Córtex Cerebral/fisiologia , Discriminação Psicológica/fisiologia , Inibição Psicológica , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Estudos de Coortes , Masculino , N-Metilaspartato , Neurotoxinas , Ratos
19.
Curr Biol ; 28(12): 1975-1980.e6, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29887312

RESUMO

Memory relies on lasting adaptations of neuronal properties elicited by stimulus-driven plastic changes [1]. The strengthening (and weakening) of synapses results in the establishment of functional ensembles. It is presumed that such ensembles (or engrams) are activated during memory acquisition and re-activated upon memory retrieval. The retrosplenial cortex (RSC) has emerged as a key brain area supporting memory [2], including episodic and topographical memory in humans [3-5], as well as spatial memory in rodents [6, 7]. Dysgranular RSC is densely connected with dorsal stream visual areas [8] and contains place-like and head-direction cells, making it a prime candidate for integrating navigational information [9]. While previous reports [6, 10] describe the recruitment of RSC ensembles during navigational tasks, such ensembles have never been tracked long enough to provide evidence of stable engrams and have not been related to the retention of long-term memory. Here, we used in vivo 2-photon imaging to analyze patterns of activity of over 6,000 neurons within dysgranular RSC. Eight mice were trained on a spatial memory task. Learning was accompanied by the gradual emergence of a context-specific pattern of neuronal activity over a 3-week period, which was re-instated upon retrieval more than 3 weeks later. The stability of this memory engram was predictive of the degree of forgetting; more stable engrams were associated with better performance. This provides direct evidence for the interdependence of spatial memory consolidation and RSC engram formation. Our results demonstrate the participation of RSC in spatial memory storage at the level of neuronal ensembles.


Assuntos
Encéfalo/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...